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T
he term “artificial intelligence” (AI) 
has become the buzzword of the 
year in the chemical process indus-
tries (CPI), along with almost every 

other sector of industry and daily life. Ac-
cording to IoT Analytics, over 39% of CEOs 
mentioned AI during their Q1 2025 earnings 
calls, second only to the word “tariffs” [1]. 
Ever since OpenAI (San Francisco, Calif.; 
www.openai.com) unveiled its large lan-
guage model ChatGPT in November 2022, 
attention on AI tools, along with their possi-
bilities for raising productivity and spurring 
innovation, has grown dramatically. 

But while awareness of AI is at an all-time 
high, a satisfying definition for the term re-
mains elusive. For now, we will refrain from 
asking ChatGPT for a definition of AI, and 
instead refer to Webster’s Dictionary, which 
defines AI as follows: 
“1. The capability of computer systems or al-
gorithms to imitate intelligent human behavior.
2. A branch of computer science dealing 
with the simulation of intelligent human be-
havior by computers [2].” 

This definition seems too broad and too 
generic to be of any great use, and makes 
it difficult to definitively determine what falls 
under this umbrella and what does not. This 
difficulty was famously called “the AI effect” 
by the American computer scientist and AI 
pioneer John McCarthy. The AI effect is an 
attempt to capture the idea that as soon as 
an AI system becomes proficient at a task 
or function, that task or function is often 
no longer viewed as being part of AI, and 
the goalposts for what qualifies as “AI” are 
moved accordingly [3]. The Australian robot-
ics scientist and Massachusetts Institute of 
Technology (MIT; Cambridge, Mass.; www.
mit.edu) professor Rodney Brooks states 
the idea as this: “Every time we figure out a 
piece of [AI], it stops being magical [and] we 
say, ‘Oh, that’s just a computation’” [4].  

This article is designed to provide a de-
scription of the different AI technologies cur-
rently being employed in chemical manu-
facturing processes, and an overview of the 
applications for which they are being used. 

AI: a brief history 
Beliefs surrounding the “AI Effect” landscape 
can vary, but some suggest that the jour-
ney of AI within the manufacturing sector is 
rooted in centuries of innovation. In 1642, 
French mathematician and physicist Blaise 
Pascal built a mechanical calculator to au-
tomate arithmetic. Because the term “AI” 
wouldn’t be coined until a few centuries later, 
some may have thought of Pascal’s system 
as black magic. Just under 200 years later, 
the English polymath and inventor Charles 
Babbage designed the “Analytical Engine,” 
a programmable mechanical computer that 
predated digital electronics by over a century 
(Figure 1) [5]. These and other developments 
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FIGURE 1. The roots of AI trace back centuries, to the first 
attempts at automated computation (photo: Wikimedia Commons)



laid the groundwork for the compu-
tational logic that would eventually 
underpin AI. 

In more modern times, British 
mathematician Alan Turing, consid-
ered to be the father of AI, posed a 
profound question. To open his 1950 
paper “Computing Machinery and 
Intelligence,” Turing wrote “I propose 
to consider the question . . . can ma-
chines think?” He then led the de-
velopment of what is now called the 
“Turing Test,” in which a human as-
sessor examines a written dialogue 
between a human and a machine, 
with the objective of identifying which 
participant is the machine. A machine 
is deemed to have “passed” the test 
if the human evaluator is unable to 
reliably distinguish its responses from 
those of the human.

The field of AI has been evolving at 
an accelerating pace ever since. The 
1960s saw the development of ELIZA, 
an early natural language processing 
program, 50 years before the introduc-
tion of Amazon’s Alexa or Apple’s Siri.  

AI has made a mark on pop culture 
as well. Widely seen films like Star 
Wars and Back to the Future brought 
AI ideas into the public imagination. 
But unfortunately, the world found it-
self losing hope when personal com-
munication droids like C-3PO and 
time travel failed to materialize. The 
period from the 1970s to the 1990s 
is referred to as “the AI Winters,” and 
was characterized by a massive re-
duction in research and public inter-
est in artificial intelligence [6].  

The late 20th century witnessed 
significant milestones, as comput-
ers and technology were finally able 
to live up to people’s expectations. 
IBM’s (Armonk, N.Y.; www.ibm.com) 
Deep Blue supercomputer defeated 
chess champion Garry Kasparov in 
1997, and IBM’s AI tool Watson won 
the American gameshow Jeopardy! 
in 2011. The introduction of con-
sumer products like Roomba and 
iPhone further demonstrated AI's 
practical applications. This brings us 
to the current time, where generative 
AI is dramatically surpassing most 
people’s wildest imaginations, and AI 
is garnering a great deal of funding. 
Significant advancements in AI have 
recently come from OpenAI, Google, 
Microsoft, Anthropic, xAI, Deepseek 

and a host of other companies and 
research organizations.

Three categories of AI
While generative AI and large lan-
guage models (LLMs) dominate the 
headlines today, they represent only 
the most visible tip of a much broader 
and more mature spectrum of AI ca-
pabilities. The foundation of modern 
AI is built upon several interrelated 
subfields, each contributing critical 
functionality to intelligent systems 
used across industries. The func-
tions include predictive maintenance 
in manufacturing to autonomous ve-
hicles and personalized healthcare 
(Figure 2). Here are descriptions of 
the main categories of AI: 
Machine learning (ML). At its core, 
machine learning is the science of 
enabling computers to learn from 
data and improve their performance 
over time without being explicitly pro-
grammed for every task. ML encom-
passes a wide variety of algorithms 
that can recognize patterns, classify 
data, predict outcomes or cluster in-
formation into meaningful groups. In 
manufacturing, ML powers everything 
from yield prediction and process op-
timization to supply-chain forecasting 
and energy management.
Artificial neural networks (ANNs). 
Artificial neural networks are a class 
of ML models loosely inspired by the 
structure of the human brain. Com-
posed of interconnected “neurons” 
or nodes arranged in layers, ANNs 
can model complex, nonlinear rela-
tionships within large datasets. They 
are particularly effective in tasks like 
pattern recognition, sensor fusion 
and fault detection.
Deep learning (DL). Deep learning 
is a specialized subset of machine 
learning that utilizes neural networks 
with multiple hidden layers, giving rise 
to the term “deep.” These architec-
tures allow DL models to learn hierar-
chical representations of data, making 
them exceptionally good at process-
ing high-dimensional inputs, such as 
images, audio and unstructured text. 
Deep learning is what powers ad-
vanced computer vision systems for 
quality inspection, autonomous navi-
gation and speech recognition.
Generative AI (GenAI). Genera-
tive AI refers to models capable of 

creating new content, such as text, 
images, audio, programming code, 
or even molecular structures, based 
on patterns learned from vast train-
ing datasets. The most well-known 
subset of GenAI today is LLMs, such 
as OpenAI’s GPT, Google’s Gemini 
and Meta’s LLaMA. These models 
are trained on massive amounts of 
text data and can generate human-
like responses to prompts, sum-
marize documents, translate lan-
guages, write computer code and 
more. In industrial contexts, GenAI is 
beginning to transform how opera-
tors interact with systems, enabling 
natural-language interfaces for data 
queries, generating shift reports from 
operational data, drafting standard 
operating procedures (SOPs) and 
even simulating training scenarios.

Types of machine learning 
If you tried to catalog every machine-
learning algorithm ever developed, 
you would need an entire library, and 
maybe a few backup hard drives. 
There are literally hundreds of distinct 
models, each with their own quirks, 
strengths and ideal use cases. The 
sheer variety of ML algorithms can 
feel overwhelming, especially for 
those starting out in the field.

Machine learning is typically orga-
nized into three core categories (Fig-
ure 3). Think of these not as compet-
ing techniques, but as different tools 
in an AI toolbox, with each area suited 
to a particular type of problem. The 
categories are described here:
Unsupervised learning. Unsuper-
vised learning is targeted toward 
discovering hidden patterns in data, 
without any labeled outcomes to 
guide the way. It is considered “un-
supervised” because the model is 
not told what to look for. Instead, 
the ML model sifts through data to 
find natural groupings, anomalies or 
correlations on its own. This is used 
for pattern recognition, outlier and 
anomaly detection, and finding shifts 
and clusters in operating data. The 
key takeaway here is that there is no 
“prediction” — the model is simply 
identifying complex correlations and 
patterns in data.
Supervised learning. In contrast, 
supervised learning is designed to 
make predictions based on histori-



cal outcomes. These models train 
on labeled data, where we already 
know the answer, and learn to gen-
eralize those patterns to new situa-
tions. If you’ve ever built a regression 
model with a Y variable, then you’ve 
already dabbled in supervised learn-
ing. In fact, regression models use 
the same logic behind most image-
recognition systems. Feed the model 
thousands of photos labeled “cat” or 
“dog,” for example, and it learns to 
classify future images with surprising 
accuracy. Supervised learning is a 
powerful ML technique, but it is only 
as good as the data-labels fed into it.
Reinforcement learning. Rein-
forcement learning (RL) takes a dif-
ferent approach. RL models learn 
by trial and error, receiving feedback 
(called “rewards”) as they explore 
and act within an environment. Over 
time, the models learn which actions 
maximize their cumulative reward. It 
is analogous to training a dog, only 
with math instead of treats. RL is 
most famously used in strategy 
board games like chess and the 
Chinese game go, where the model 
simulates millions of matches, learn-
ing from both its wins and losses. 
Increasingly, RL is making its way 
into industrial settings, where it is 
being applied to dynamic control 
problems, optimization tasks and 
autonomous operations.

In essence, unsupervised learning 
finds hidden structure, while super-
vised learning learns from labeled ex-
amples, and reinforcement learning 
learns by doing. Together, the three 
forms of ML constitute the backbone 
of modern AI systems.

Choosing ML algorithms
With hundreds of machine-learn-
ing algorithms to choose from, and 
nearly all of them having made at 
least a cameo appearance in chemi-
cal manufacturing, the real question 
is not as much about whether the 
algorithms work, but which ones 
consistently deliver value. Over time, 
a handful of workhorse algorithms 
have emerged as being especially 
well-suited to handling the messy, 
high-dimensional, sensor-rich world 
of process manufacturing. The four 
algorithms described here are the 
ones on which the author has relied 
when building industrial AI solutions 
in the past. These four have all shown 
themselves to be effective across 
thousands of real-world use cases.
Principal component analysis 
(PCA). PCA is an unsupervised 
learning algorithm used for dimen-
sionality reduction and clustering. 
In plain terms, PCA takes complex, 
high-dimensional process data and 
transforms it into a smaller set of 
orthogonal components, each cap-
turing a slice of the variance in the 
data. What does that mean in prac-
tice? It means PCA helps users see 
patterns and correlations that would 
likely not be noticed by just staring 
at raw variables. PCA has been suc-
cessful in the following functions:

•	Fault detection
•	Golden batch analysis
•	Real-time process monitoring
If this author was forced to make 

due with only one ML algorithm, I 
would choose PCA.
Partial least squares (PLS). PLS 
can be thought of as PCA’s more 

predictive sibling. While PCA is 
geared toward uncovering structure 
among data, PLS uses that same 
mathematical foundation to model 
relationships between your input 
variables (X) and a target output (Y).

PLS shines in situations where 
data are noisy, or where variables 
are highly collinear, which basically 
describes data from every chemical 
plant, ever. PLS is especially useful 
in the following areas:

•	Chemometrics
•	Spectroscopy
•	Real-time soft sensors for pre-

dicting product qualities like viscos-
ity, pH or melt index

Succinctly, PCA shows users 
what’s going on, while PLS tells them 
what is likely to happen next.
Neural networks. Neural networks 
are the “Swiss Army knives” of ML. 
Inspired by the human brain, they are 
flexible, nonlinear function approxi-
mators that thrive in high-dimen-
sional, dynamic environments.

Neural networks are particularly ef-
fective for the following tasks:

•	Predictive maintenance using 
equipment sensor data

•	Image-based defect detection 
with convolutional neural networks

•	Dynamic system modeling and 
closed-loop simulations

When used with deep-learning 
architectures, neural networks can 
model highly nonlinear, multistep 
relationships that traditional models 
would not be able to see.
XGBoost. Extreme gradient boost-
ing (XGBoost) is a workhorse tech-
nique for when more complex anal-
ysis and predictions are needed, 
especially with time-series data. 
XGBoost is a high-performance, 
supervised-learning algorithm that 
builds a series of optimized decision 
trees. XGBoost can be thought of as 
a more powerful version of the “ran-
dom forest” algorithm. It is faster, 
more accurate and often better at 
teasing out subtle interactions be-
tween variables.

XGBoost algorithms excel when 
used for several tasks in particular. 
These include yield prediction, batch 
classification and root-cause analy-
sis from historical process data.

In what is perhaps the best fea-
ture of all, XGBoost is highly effec-

FIGURE 2. Modern AI is built upon a several interrellated subfields, each contributing critical functionality 
to intelligent systems used in industrial operations
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tive at handling noisy, irregular pro-
cess data, such as those coming 
from temperature sensors, pressure 
transmitters, flowmeters and other 
process instruments.

Practical applications for ML
ML techniques have moved beyond 
the research-and-development and 
proof-of-concept stages to become 
serious, scalable enablers across the 
entire chemical manufacturing life-
cycle. What used to be niche experi-
ments at chemical manufacturing 
sites are now systems that drive real, 
repeatable value, such as boosting 
uptime, improving product quality, 
optimizing resource use and ad-
vancing sustainability goals. Whether 
a facility is running batch reactors or 
continuous distillation columns, AI is 
now starting to feel less like a buzz-
word and more like part of the plant’s 
nervous system. The following are 
nine areas in which ML technologies 
are now being applied in chemical 
processing environments. 
Open-loop advisory systems. 
Open-loop advisory systems provide 
real-time decision support to opera-
tors, without directly interfacing with 
the control layer. These tools analyze 
historical and live process data using 
techniques like PCA, clustering and 
gradient boosting (such as XGBoost), 
and then surface actionable insights.

In a pulp mill case study, a mill-
wide optimization (MWO) tool was 
run in advisory mode. Operators 

reviewed the AI’s suggested tar-
gets and applied them as setpoints, 
thereby using the solution as an 
“open-loop advisory system” to 
drive optimal production [7].  
Modeling of “golden batches.” 
Golden-batch modeling uses un-
supervised learning techniques like 
PCA, k-means clustering (group-
ing similar data points into clusters) 
and dynamic time warping (DTW; 
comparing unsynchronized tempo-
ral sequences) to create a statisti-
cal fingerprint of the best production 
runs at a site. Once that fingerprint 
is locked in, users can monitor live 
batch data in real time and catch 
deviations before they become yield 
losses or material requiring rework.

In practice, this means compar-
ing each batch’s data to the golden-
batch standard and adjusting pa-
rameters. For instance, experts from 
Siemens AG (Munich, Germany; 
www.siemens.com) note that with 
AI, plants can pinpoint what defines 
the golden batch and catch negative 
trends early so that batches can be 
saved instead of discarded [8].  
Predictive maintenance. ML mod-
els are proving to be game chang-
ers in asset reliability programs, es-
pecially when it comes to predicting 
mechanical or electrical failures using 
vibration, temperature, pressure and 
acoustic data.

Algorithms like random forests, 
support vector machines (SVMs) and 
deep neural networks can identify 

degradation patterns long before hu-
mans or traditional rule-based sys-
tems would be able to detect. McK-
insey & Co. (New York, N.Y.; www.
mckinsey.com) reports that AI image 
recognition and pattern analysis help 
identify anomalies and predict equip-
ment failures in the field, enabling 
preventive maintenance and im-
proved uptime [9].  
Predictive analytics for quality and 
yield. Predictive analytics lets users 
forecast product quality, yield, or 
emissions hours (or even days) be-
fore laboratory testing results come 
in. Models like PLS, neural networks 
and XGBoost are used to correlate 
live process data with critical quality 
attributes (CQAs).

For example, one petrochemical 
site built a neural net model that pre-
dicted sulfur content with 94% ac-
curacy, allowing operators to adjust 
blend ratios in real time and avoid 
off-specification product [10]. Similar 
tools are now used across the in-
dustry for polymer grade prediction, 
cycle time optimization and compli-
ance forecasting.
Soft sensors and virtual instrumen-
tation. Soft sensors estimate hard-
to-measure process parameters 
using correlated surrogate variables 
and ML models. These are especially 
useful when laboratory samples are 
slow to analyze or online analyzers 
are too expensive or unreliable.

Common techniques include PLS 
regression, multivariate adaptive re-
gression splines (MARS), and LSTM 
(long-short-term memory) neural 
networks. Researchers developed 
ML-based soft sensors to estimate 
key water quality parameters, such 
as chemical oxidation demand 
(COD), total suspended solids (TSS) 
and E. coli levels, in real time using 
easily measurable in-line data from 
an onsite wastewater treatment sys-
tem. Despite limited datasets, the 
models accurately predicted COD 
(R² = 0.96) and TSS (R² = 0.99), 
demonstrating the potential of soft 
sensors for cost-effective, real-time 
performance monitoring [11].  
Fault detection and root-cause 
analysis. Modern ML-based moni-
toring systems are redefining how 
process troubleshooting is accom-
plished. PCA, autoencoders and 

FIGURE 3. The field of machine learning can be divided into different types, each with its own strengths



decision trees are often deployed in 
combination with data historian and 
distributed control system (DCS) 
data to flag subtle anomalies and 
uncover complex root causes.

In one case, an unsupervised 
anomaly-detection model identified 
a pressure imbalance in a distillation 
tower. Engineers traced it back to a 
steam valve drift that had gone un-
noticed by standard alarms [12]. ML 
helped cut down root-cause analysis 
time, prevented escalation and re-
duced the risk of repeat failures.
Inventory and supply chain op-
timization. Beyond the plant floor, 
ML tools are transforming how raw 
materials are managed, how pro-
duction is planned and how supply-
chain risks are reduced. Time-series 
forecasting, LSTM models and gra-
dient boosting are being used to pre-
dict demand patterns, raw material 
usage and procurement lead times.

According to McKinsey & Co., 
AI-enabled systems can simulate 
various supply-chain scenarios and 
optimize inventory levels and costs. 
This can be done, for example, by 
evaluating different production and 
distribution plans to meet demand 
with minimal stock-outs or overstock 
[13]. This kind of optimization helps 
balance working capital with opera-
tional readiness.
Emissions monitoring and envi-
ronmental compliance. Environ-
mental monitoring is no longer just a 
compliance checkbox, it is becoming 
a core optimization lever. ML models 
like neural networks and regression-
based predictors can forecast emis-
sions such as NOx, CO2, and volatile 
organic compounds (VOCs) using 
real-time process data.

In a cement kiln application, arti-
ficial neural networks and support 
vector regression were used to de-
velop soft sensors for real-time esti-
mation of O2, CO, NO and CH4 con-
centrations in stack gas, providing 
a reliable alternative during analyzer 
downtime that is caused by interfer-
ence from fine dust [14].   
Autonomous closed-loop control 
systems. Autonomous, closed-loop 
control uses ML to do more than just 
advise. The ML takes action also. This 
is considered the bleeding edge of 
ML application at manufacturing sites 

right now. Reinforcement learning, 
model predictive control (MPC) and 
digital twins are used to adjust control 
setpoints in real time to optimize for 
yield, emissions or energy use.

For instance, Imubit Inc. (Hous-
ton, Tex.; www.imubit.com) has im-
plemented its Closed Loop Neural 
Network™ platform, which utilizes 
reinforcement learning to optimize 
complex industrial processes in real 
time. This technology has been de-
ployed in over 90 applications across 
major industrial processing plants, 
leading to significant improvements 
in operational efficiency and energy 
consumption. Notably, in rotary kiln 
operations, the platform has achieved 
up to a 30% reduction in natural gas 
usage. These systems require robust 
simulation environments, safety con-
straints and rigorous validation, but 
they represent a clear step toward 
self-optimizing plants [15].  

Machine learning is not a “plug-
and-play” solution. It still requires 
clean, contextualized data, strong 
domain expertise and alignment 
with plant priorities. But when used 
strategically, it can become a pow-
erful catalyst for making smarter 
decisions, improving the efficiency 
of operations and driving long-term 
competitiveness.

From predictive maintenance to 
autonomous control, the promise of 
AI in chemical manufacturing is no 
longer theoretical — it’s operational.

Generative AI in manufacturing
Because generative AI has been es-
pecially visible in the last two years, a 
logical question becomes: How ex-
actly can GenAI be used in chemical 
processing plants?

In late 2022, at the time that Chat-
GPT was launched, my guess would 
have been that it would take 10 to 
20 years before the kinds of capa-
bilities exhibited by ChatGPT would 
be available to operators on the plant 
floor. As it turns out, the pace with 
which natural language AI models 
would be adopted at chemical plants 
was drastically underestimated.

The pace of advancement in GenAI 
is truly mind-blowing, and for once, 
the manufacturing community is not 
lagging behind — it is leaning in.

While traditional ML focuses on 

prediction, classification and optimi-
zation, GenAI introduces something 
entirely new: content and knowledge 
creation. Trained on massive data 
sets from operator logs and techni-
cal manuals to equipment metadata, 
GenAI systems can synthesize text, 
generate recommendations, create 
documentation and even simulate 
future scenarios.

As the chemical manufacturing in-
dustries continue to digitize, GenAI 
is already starting to reshape knowl-
edge management, operator enable-
ment, engineering design and com-
pliance workflows. Here are eight 
emerging, high-impact use cases for 
GenAI already gaining traction on the 
plant floor.
Standard operating procedure 
(SOP) generation and knowledge 
documentation. Generative AI can 
automatically draft SOPs, safety pro-
cedures and maintenance checklists 
by learning from existing documen-
tation, historian data and control 
logic. Models such as GPT-4 or 
domain-tuned LLMs can parse en-
gineering documents and synthesize 
coherent instructions customized to 
plant-specific operations.

For example, eGain’s AI Knowl-
edge Hub uses generative AI to 
capture tacit knowledge from expe-
rienced employees and transform 
it into structured, usable guidance. 
This approach has been used in 
knowledge-intensive industries to 
reduce documentation time and ad-
dress the looming risk of institutional 
knowledge loss due to retirements 
and workforce churn [16].  
Natural language interfaces to 
complex systems. One of the most 
accessible applications of GenAI is its 
ability to translate human language 
into structured queries or engineer-
ing logic. Using LLMs fine-tuned with 
domain-specific data and tools like 
LangChain or Azure OpenAI Service, 
operators can query large datasets 
or historian systems in plain English.

For instance, Celanese Corp. (Ir-
ving, Tex.; www.celanese.com) has 
developed a generative AI-powered 
chatbot named “Celia” as part of its 
digital transformation efforts. Celia 
serves as a user-friendly interface 
to the company’s digital twin, allow-
ing manufacturing personnel to ask 



questions like, “What is the produc-
tion status of the Clear Lake facility?” 
and receive real-time, contextualized 
responses. This approach has im-
proved visibility, collaboration, and 
decision-making across Celanese's 
manufacturing sites [17]. 
Automated root-cause analysis 
reports. After a process deviation or 
equipment failure, GenAI can com-
pile multi-system data (from DCS, 
alarms, maintenance logs and so 
on) and create narrative reports that 
summarize likely root causes, based 
on previous incidents and plant 
knowledge bases.

For instance, Intel Corp. (Santa 
Clara, Calif.; www.intel.com) devel-
oped a manufacturing “incident as-
sistant” using Articul8’s generative AI 
platform to diagnose and resolve man-
ufacturing problems. This system in-
gests and analyzes structured and un-
structured data from diverse sources, 
including historical data and real-time 
feeds from sensors and semiconduc-
tor manufacturing equipment [18].  
Technical report and audit prepa-
ration. GenAI is being used to pre-
fill environmental audit templates, 
emissions disclosures and perfor-
mance reviews by pulling data from 
production reports, historian tags 
and manufacturing execution sys-
tems (MES). These models can also 
generate summaries in regulatory 
language aligned with U.S. Envi-
ronmental Protection Agency (EPA; 
www.epa.gov), Occupational Safety 
and Health Administration (OSHA; 
www.osha.gov), or E.U. Registra-
tion, Evaluation, Authorization of 
Chemicals (REACH) frameworks.

For instance, SG Systems Global 
(Farmer’s Branch, Tex.; sgsystems-
global.com has developed a recipe 
management software tailored for 
pharmaceutical manufacturers, which 
integrates seamlessly with enterprise 
resource planning (ERP) systems to 
provide electronic batch records and 
ensure compliance with 21 CFR Part 
11 requirements. This digital system 
enhances quality, reduces costs, and 
eliminates errors compared to tradi-
tional paper-based systems by offer-
ing features like guided procedures, 
automatic data logging and traceabil-
ity of batch information [19].  
Simulation and scenario narra-

tive generation. When coupled with 
digital twins or process simulation 
engines, GenAI can generate inter-
pretive narratives of simulated out-
comes. This helps plant personnel 
better understand the implications of 
parameter changes, equipment fail-
ures or operating strategies without 
needing to manually analyze time-
series outputs.

BMW has developed a comprehen-
sive digital twin of its manufacturing 
facilities using NVIDIA’s (Santa Clara, 
Calif.; www.nvidia.com) Omniverse 
platform. This virtual environment al-
lows BMW to simulate the entire pro-
duction process, including the move-
ment of vehicles through assembly 
lines, interactions with machinery and 
worker ergonomics. By incorporat-
ing GenAI, BMW can analyze these 
simulations to identify potential bottle-
necks, optimize workflows, and pre-
dict the outcomes of changes in the 
production process [20].  
Code and logic generation for 
engineering applications.  LLMs 
like Codex or GitHub Copilot are in-
creasingly being used to accelerate 
development of engineering scripts, 
logic blocks and visualization dash-
boards. Engineers can describe the 
intent (for example, “plot batch cycle 
times over the last six months and 
flag anomalies”), and the GenAI tool 
produces code in Python, SQL, or 
even SCADA scripting languages to 
accomplish that function.

DXC Technology (Ashburn, Va.; 
www.dxc.com) has implemented 
LLM-powered tools to transform 
data exploration for their oil-and-gas 
customers. These tools use LLMs to 
generate Python code, execute it, 
and return the results, enabling users 
to interact with complex datasets 
through natural language queries. 
This approach simplifies data analy-
sis tasks, such as filtering and aggre-
gating data, without requiring users 
to write code manually [21].  
Training and operator enable-
ment. GenAI systems are capable 
of generating quizzes, flashcards, 
safety walkthroughs and interac-
tive training content based on ac-
tual plant procedures and historical 
performance data. By tailoring this 
content to specific unit operations 
or employee roles, companies can 

dramatically reduce onboarding time 
and reinforce critical knowledge.

Colossyan Inc. (London, U.K.; www.
colossyan.com) is a technology com-
pany that leverages GenAI to create 
corporate training videos. Their plat-
form enables companies to produce 
training videos without traditional film-
ing equipment, utilizing text-to-speech 
technology and AI avatars to deliver 
content with realistic lip-syncing. This 
approach allows for the rapid cre-
ation of multilingual training materials, 
including safety walkthroughs and 
equipment tutorials, tailored to specific 
roles and procedures [22].  
Generative design and equipment 
layouts (emerging). While still early 
in their development, generative 
models are being trained to propose 
plant equipment layouts, process 
flow diagrams (PFDs) or even mol-
ecule structures based on desired 
outcomes or constraints. These 
tools can suggest design alterna-
tives, compare tradeoffs and accel-
erate early-stage engineering work.

Airbus has collaborated with Au-
todesk to apply generative design 
techniques in reimagining structural 
aircraft components, such as the ver-
tical tail plane of the A320. By utilizing 
generative design, Airbus developed 
lighter-weight parts that exceed per-
formance and safety standards. Be-
yond aircraft components, Airbus is 
also exploring the use of generative 
design for the layout of adaptable, 
DGNB- (www.dgnb.de) and LEED-
certified factories, aiming to stream-
line logistics and improve employee 
work conditions [23]. 

GenAI adds a new layer of intel-
ligence to chemical manufacturing. 
It doesn’t just predict what’s going 
to happen. It actively creates knowl-
edge, drafts documents, simulates 
scenarios and even writes program-
ming code.

While these tools are still maturing, 
they are already accelerating docu-
mentation, training, analytics, and 
decision-making across the plant.

To deploy GenAI safely and effec-
tively, manufacturers should:
•Use retrieval-augmented genera-
tion (RAG) to anchor outputs in veri-
fied plant knowledge
•Keep humans in the loop to validate 
content before execution
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•Establish governance, audit trails 
and model traceability
•Fine-tune models with domain-spe-
cific data to reduce hallucinations 
and increase relevance

GenAI is not just another technol-
ogy trend; it is a powerful augmen-
tation layer for the modern chemical 
workforce, unlocking faster insights, 
leaner operations and a smarter, 
more intuitive interface between 
people and plant data.

Future of AI in the CPI
Given the pace of AI advancement 
over the past few years, I would not 
claim to be able to precisely predict 
how, when or where these technolo-
gies will ultimately take us. Just a de-
cade ago, few imagined the possi-
bilities that humans would be having 
fluent conversations with machines, 
or that engineers could generate re-
ports from PDFs in seconds, or that 
they could use predictive models to 
fine-tune reactor conditions in real 
time. And yet, here we are.

In the world of chemical manufactur-
ing, the promise of AI is not about re-
placing the deep domain knowledge of 
process engineers or the hard-earned 
intuition of control-room operators. It’s 
about amplifying human expertise, un-
locking insight buried deep in data and 
enabling faster, smarter decisions at 
every level — from the operator con-
sole to the executive boardroom.

The true power of AI does not lie 
with any one algorithm, model or 
software platform. It lies in the stra-
tegic fusion of three forces: the right 
data, the right problem and the right 
application. When aligned, these 
create a feedback loop of continu-
ous learning and improvement — 
one that can be scaled across units, 
plants and global operations.

Imagine a future where the follow-
ing scenarios are a reality:
•New operators train not by read-
ing manuals, but by interacting with 
conversational AI tutors that speak 
in plant-specific language, referenc-
ing years of shift logs, batch reports 
and incident learnings.
•Every asset on the plant floor be-
comes its own historian and ana-
lyst, flagging anomalies, predicting 
failures and suggesting optimiza-
tions autonomously.

•Digital twins don’t just simulate the 
process, they co-pilot it, learning and 
adapting to new feedstocks, envi-
ronmental conditions and economic 
constraints in real time.
•Sustainability goals become engi-
neering constraints, and AI navigates 
tradeoffs between efficiency, carbon 
footprint and cost at computing 
speeds no human could achieve.

This is not science-fiction. The 
building blocks for these capabilities 
are already available. AI will not revo-
lutionize chemical manufacturing in 
a single “big bang.” It will do so qui-
etly, relentlessly and exponentially, 
plant by plant, asset by asset and 
shift by shift.

The greatest threat is not AI itself — 
rather, it is doing nothing. Waiting too 
long to begin implementing AI tools 
is likely to result in witnessing com-
petitors turn their predictive insights 
into lower costs, safer plants, smarter 
workforces and greener operations.

To succeed, manufacturers must 
stop thinking about AI as a project, 
and start thinking of it as a capability, 
a core pillar of operational excellence 
in the digital age. AI is no longer op-
tional. It is the infrastructure of deci-
sion-making for the next generation 
of manufacturers.

The winners of tomorrow won’t be 
the ones with the flashiest technol-
ogy or the largest budgets. The win-
ners will be the ones who deeply un-
derstand their process, embrace the 
messiness of real-world data, and 
treat AI as a multiplier of human tal-
ent, rather than a replacement.

So while I cannot and will not pre-
dict exactly what comes next, I will say 
that the plants that invest in AI today 
— those that experiment, learn, scale 
and lead from the front — will not only 
build smarter factories, they will build 
the future of manufacturing itself. And 
the future is already knocking. 	 n

		  Edited by Scott Jenkins
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